

Insights into the Structure of Aluminum-Doped Manganese Dioxides for Direct Lithium Extraction: Modeling and Sorption Mechanism

Junhua Xu, Małgorzata Szlachta

December 4, 2024, Poland

Supported by

Co-funded by the European Union

State of the Art –Direct Li Extraction

Conventional solar evaporation

- Time-consuming,
- Land-intensive,
- Water-intensive,
- Weather-dependent

Direct Lithium extraction (DLE) technology:

Lithium ions would be extracted selectively from a brine while all other salts would remain in the solution

- ✓ Highly efficient Li recovery
- ✓ Minimal environmental impacts
- A shorter time, lower in carbon footprint and less dependent on weather conditions

Desalination 577 (2024) 117406

- Adsorption
- Ion exchange
- Solvent extraction Sorption
- Membrane
- Electrochemical

- High selectivity
- High separation efficiency
- Low initial investment
- High theoretical lithiumuptake
- capacity
- Relatively low energy usage

Desalination 575 (2024) 117249

Most favourite materials for Li extraction

Performance	Al-based	Mn-based	Ti-based
Li Adsorption Capacity	***	***	***
Li Selectivity	***		***
Technology Maturity	x x x	***	****
Stability and Regeneration Ability	x x x	☆☆☆	***
Facile Operation Condition	x x x	***	***
Environmental Safety	***	***	***
Low Preparation Cost	***	****	***

Desalination 539 (2022) 115951

Mn-based and Ti-based adsorbents are the most selective materials for Li extraction

The dissolution of manganese from Mn oxide-based sorbents is inevitable and leads to a significant reduction in the amount of Li uptake.

The dissolution would directly affect the cycle life of lithium-ion sieves, and their capacities need to be enhanced.

Mn oxide-based sorbents as most favourite materials need optimization and further development

J. Hazard. Mater. 425(2022)127957

RawMaterials

Hydrothermal Method and Solid-State Calcination:

•Simple and easy to operate, allowing for uniform mixing of materials.

•The prepared materials have controllable morphology and size, good crystallinity, and high purity.

Li_{1.6}Mn_{1.6}O₄ (LMO) LMO-2.5Al (2.5% molar ratio Al/Mn) LMO-5Al (5% molar ratio Al/Mn) LMO-10Al (10% molar ratio Al/Mn)

As the amount of AI doping increases, the (111) crystal plane spacing decreases. This is because AI³⁺ partially replaces Mn, with the ionic radius of AI³⁺ (r(AI³⁺) = 0.61 Å) being smaller than that of Mn⁴⁺ (r(Mn⁴⁺) = 0.62 Å) and Mn³⁺ (r(Mn³⁺) = 0.66 Å), corresponding to the lattice constants observed in the XRD analysis.

cm ⁻¹	
614-585	[MnO ₆] Mn-O
1123-1093	Li-O
1641-1632	-OH
3511-3476 cm ⁻¹ 、3459- 3408 cm ⁻¹	H ₂ O

Synthesis and characterizations

LMO-10AI

- LMO: Mn⁴⁺/Mn³⁺ = 1.14
- LMO-2.5AI : Mn⁴⁺/Mn³⁺= 1.49
- LMO-5AI : Mn⁴⁺/Mn³⁺= 1.78
- LMO-10AI : Mn⁴⁺/Mn³⁺ = 1.81
- At the Al 2p peak: as the amount of Al doping increases, the corresponding peak (72-75 ev) intensity increases.
- HMO: Mn⁴⁺/Mn³⁺= 1.43
- HMO-2.5AI : Mn⁴⁺/Mn³⁺= 1.54
- HMO-5AI : Mn⁴⁺/Mn³⁺= 1.91
- HMO-10AI : Mn⁴⁺/Mn³⁺= 2.04

The calculated chemical formula is shown in the table

Samples	Chemical formula		
НМО	$Li_{0.035}H_{1.563}(Mn(III)_{0.412}Mn(IV)_{0.5885})_{1.652}\Box_{0.474}O_{4.}0.23H_{2}O_{4.}0.25H_{2}O_{4.}0.25H_{2}O_{4.}0.25H_{2}O_{4.}0.25H_{2}O_{4.}0.23H_{2}O_{4.}0.25H$		
HMO-2.5Al	Li _{0.010} H _{1.588} Al _{0.01} (Mn(III) _{0.393} Mn(IV) _{0.607}) _{1.494} □ _{0.983} O ₄ .0.22H ₂ O		
HMO-5AI	Li _{0.012} H _{1.588} Al _{0.052} (Mn(III) _{0.344} Mn(IV) _{0.656}) _{1.534} □ _{0.636} O ₄ .0.22H2O		
HMO-10Al	Li _{0.002} H _{1.600} Al _{0.087} (Mn(III) _{0.329} Mn(IV) _{0.671}) _{1.436} □ _{0.865} O ₄ .0.23H2O		

Batch experiments

• Titration, pH adsorption, adsorption isotherm, Cyclic stability and coexisting ions experiments were conducted.

Modeling development

- Combining the geochemical software PHREEQC with the Python programming language.
- Two types of adsorption sites assumed exist on the surface of manganese-based lithium ion sieve powders: strong adsorption sites (=S^SOH) and weak adsorption sites (=SWOH).
- The existence of at least two types of physical sorption sites: planar and edge surface sites (S) and vacancies (W) within the structural framework.

pH titration and modeling results of Al-Li_{1.6}Mn_{1.6}O₄ sorbents (LMO, LMO-2.5Al, LMO-5Al and LMO-10Al)

The effect of pH on the sorption capacity and their modeling results of sorbents (LMO, LMO-2.5AI, LMO-5AI and LMO-10AI)

The isotherm sorption and their modeling results of sorbents (LMO, LMO-2.5Al, LMO-5Al and LMO-10Al)

Sorption Mechanism study

Connecting matters

Cyclic stability performance

After five adsorption-desorption cycles:

- the adsorption capacities of HMO-2.5Al slightly decreased to 36.23 mg/g
- The manganese dissolution loss rates of HMO-2.5Al increased to 4.53%.

Simulated salt lake brine sorption test

Effect of coexisting ions

Adsorbent	Solution	C _{Li} +(mg L ⁻¹)	q _e (mg g ⁻¹)	References	
H _{1.6} Mn _{1.6} O ₄ -Zr-2.4%	Salt Lake	150	25.96	Separation and Purification Technology, 303 (2022) 121933	
Li _{1.6} Mg _x Mn _{1.6-x} O ₄	LiOH	156	35.6	Hydrometallurgy, 209 (2022) 105772.	
HMO-AI-5%	LiCl	167	29.9	Separation and Purification Technology, 264 (2021) 118433.	
LiMn _{2-x} Fe _x O ₄	LiCl	200	34.8	Journal of Materials Research and Technology, 13 (2021) 228-240	
LiAl _x Mn _{2-x} O ₄	LiOH	50	27.66	Microporous and Mesoporous Materials, 261 (2018) 29-34.	
Li _{1.6} Mn _{1.6} O ₄	Salt Lake	266	27.15	Hydrometallurgy, 110 (2011) 99-106.	
Li _{1.6} Mn _{1.6-x} Cr _x O ₄	Salt Lake	222	31.67	Bulletin of the Chemical Society of Japan, 92 (2019) 1205-1210.	
HMO/Al ₂ O ₃	Seawater	30	6.2	Industrial & Engineering Chemistry Research, 58 (2019) 8342-8348	
H _{1.6} Mn _{1.6} O ₄ /PAN	LiCl/LiOH	35	10.3	Chemical Engineering Journal, 254 (2014) 73-81.	
LMO-Na	LiCl	167	33.5	Separation and Purification Technology, 256 (2021) 117583	
нмо	LiOH	150	42.60	This study	
HMO-AI-2.5%	LiOH	150	44.49	This study	

em Advanced Materials Interfaces

Home Main Menu Submit a Manuscript About 🗸 Help 🗸

← Submissions Being Processed for Author

Page: 1 of 1 (1 total submissions)

Results per page 10 V

Action 🛨 📿 🏹	Manuscript Number	Title 🔺	Initial Date Submitted	Current Status 🔺
Action Links	admi.202400912	Structural Insights into Aluminum-Doped Manganese Dioxides as Promising Materials for Direct Lithium Extraction: Modeling and Mechanism Study	16 Nov 2024	Under Review

Page: 1 of 1 (1 total submissions)

Results per page 10 V

Thank you

