Towards a better understanding of risks and benefits of geothermal fluid properties:

Insights form the projects REFLECT and CRM-geothermal

Simona Regenspurg

30.03.2023

Relevance of fluid research for geothermal energy

Geochemical risks and benefits utilizing deep fluids

Redefining geothermal fluid properties at extreme conditions to optimise future geothermal energy extraction

Simona Regenspurg, Katrin Kieling

www.reflect-h2020.eu

Twitter: @reflect h2020

Call & Partners

Call:

EU Horizon 2020 LC-SC3-RES-14-2019: "Optimising manufacturing and system operation"

Duration: 3 years; start 1.1.2020, Coordination: GFZ

Background: Properties of geothermal fluids

Dashed lines show knowledge gaps for fluid properties as addressed in REFLECT:

- blue: kinetics of silica polymerization and precipitation
- purple: data on mineral solubilities, Pitzer coefficients, fluid physical properties;
- red: degassing reactions
- Green: area of relevance for microorganisms
- black: occurrence of organics

Objective and concept

The efficiency of geothermal utilisation largely depends on the behaviour of fluids that transfer heat between the geosphere and the engineered components of a power plant.

Often encountered problems are **downtime**, **maintenance costs** and even **failure of geothermal installations** due to chemical and physical properties of the fluid resulting in:

- Mineral precipitation
- Degassing
- Corrosion

Examples of scaling: Top left: Silica Scale, Reykjanes, Iceland; bottom left: sulfide scale, Iceland (both © V.Hardardottir); top right: calicte scale Hungary (© Z.Istfan); bottom right: Fe, Mg scale (Tuzla, Turkey; © A. Baba)

Concept: From react to reflect!

The aim of REFLECT is to avoid the problems related to fluid chemistry rather than treat them.

Objective:

Accurate predictions by thorough knowledge of the physical & chemical properties of geothermal fluids

Goals & structure

- 1. Extend databases for mineral precipitation to **higher temperatures** and **higher salinities** (field, lab, modelling)
- 2. Determine the extent and location of the **degasification** front of geothermal fluids
- 3. Determine types of **organic matter and microorganisms** in geothermal fluids
- 4. Determine fluid physical properties at various p, T, X
- Develop a downhole sampling technique for hot and super-hot systems
- Verification of the dataset by application in reactive transport modelling
- 7. Set up a **geothermal Fluid Atlas**

1. Extend databases (solubility, activity, reaction kinetics) to higher temperatures and salinities

Databases on solubility, activity, reaction kinetics of various species: lab experiments and modelling approaches; focus on silica, calcite, stibnite

Monitoring mineral solubility by impedance spectroscopy

Monitoring mineral solubility by solution analysis

2. Determine the degasification front

Extend and location of the degasification front of geothermal fluids during production (lab and modelling approach)

- → Degassing of CO₂ and N₂ saturated water has been studied using a visual cell and a high-speed camera at elevated pressures (up to 100 bar) and temperatures (up to 100 ° C).
- → Comparison of experimental results to numerical models
- → coreflood experiments in a CT-scanner to to characterise degassing in rock samples

3. Types and Role of Organic matter and Microorganisms

Determine types of organic matter and microorganisms in geothermal fluids and their effect on scaling and biofilm formation via laboratory studies

- Review of existing information on organic matter and microorganisms in geothermal fluids
- Validate and apply methods for the measurement and identification of microorganisms and organic matter to samples collected
- Characterization of organic matter and microorganisms at REFLECT sites

3. Types and Role of Organic matter and Microorganisms

• Various types of microorganisms at the investigated geothermal sites

4. Fluidphysical properties

Determine heat capacity, density, electrical and thermal conductivity, sonic velocity, and viscosity at various p, T, X (lab & modelling)

- Measurements (density, viscosity) are underway to quantify the effect of minor constituents in saline fluids on these properties.
- Original **density data (GFZ) was compared to numerical predictions** (BRGM) yielding an excellent match.
- Electrical conductivities of carbonate solutions at different concentrations are measured up to 450° C to determine limiting conductivities and association constants
- Numerically, a new thermodynamic model for the H-Li-Na-K-Ca-Mg-Cl-H2O chemical system has been developed, from dilute solutions up to salt support and for temperatures up to 250° C

5. Downhole sampler for high-temperature geothermal wells

REFLECT downhole sampler that has been developed to be able to sample various phases (liquid, two-phase, steam) at low to high temperature/high pressure superheated/supercritical conditions in geothermal wells. (\bigcirc (SOR)

6. Implement the new dataset into predictive modeling

Verification and implementation of the improved dataset by application in reactive transport modelling

- → open-source, generic, multi-scale package porousMedia4Foam Deliverable 4.1 provides the User's guide for the software
- → workflow for uncertainty quantification in the fluid composition and its impact on scaling
- → Release of the numerical tool coupling transport and chemical reactivity

Goals 1 & 7: Natural fluids and Fluid Atlas

Extend databases for fluids and develop a digital fluid atlas for Europe

All partners

Approach: Collect information on properties of geothermal fluids throughout Europe

data include geographical, geological, physical, chemical, and microbial properties

Purpose: give information needed for the planning and managing of geothermal facilities and thus to facilitate future geothermal projects.

7. European Geothermal Fluid Atlas

Set up a geothermal Fluid Atlas that collates information on geothermal fluid properties (existing data and new data) across Europe together with their geological setting

https://www.reflect-h2020.eu/efa/

Thanks to the Team

Three years ago: Kick-off meeting, Potsdam (2020)

Many zoom meetings

Izimr, General Assembly (June, 2022)

Raw materials from geothermal fluids: occurrence, enrichment, exploitation

https://crm-geothermal.eu/

Simona Regenspurg, Katrin Kieling

Background idea

Traditional mining

- High energy consumption during mineral extraction and processing
- Strong negative environmental impact
- · High dependence on other countries

Lithium valley © Tagesspiegel.de

Mining at geothermal settings

Geothermal fluids and settings are often loaded with several valuable elements

→ (Critical/strategic/valuable) raw materials could be extracted from brine/gas before reinjecting the fluid in the geothermal reservoir or from the scaling.

Lithium extraction geothermal brine (Paranthaman, et al., 2017)

Critical Raw Materials

CRM: economic importance for the European industry and its supply risk

Antimony	Hafnium	Phosphorus	
Baryte	Heavy Rare Earth Elements	Scandium	brine
Beryllium	Light Rare Earth Elements	Silicon metal	scale
Bismuth	Indium	Tantalum	board
Borate	Magnesium	Tungsten	
Cobalt	Natural graphite	Vanadium	
Coking coal	Natural rubber	Bauxite	
Fluorspar	Niobium	Lithium	
Gallium	Platinum Group Metals	Titanium	
Germanium	Phosphate rock	Strontium	

Quelle: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en

Others (strategic or vauble)

Geothermal fluid: liquid and gas

Scaling (mainly native Cu)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101058163.

Example: Economic relevant elements at the geothermal research site Groß Schönebeck

5b: nm	Hf: nm	P: nm
	In: < NG	Sc: 0.03 mg/L
8e: 1.9*E-3 mg/L	HREE: 0.00055 mg/L	
8I: 1 mg/L	Ught REE: 0.058 mg/L	Ta: nm
B: 95 mg/L	Mg: 180 mg/L	W: 0.09
Co: 0.007 mg/L		V: nm
	Nb: nm	LI: 200 mg/L
Ga: 0.6 mg/L	Pt, Pa: nm	TI: 0.02 mg/L
Ge: 0.01		Sr: 1800

Groß Schönebeck; Norddeutsches Becken

Cu: 100 mg/L	Mn: 200 mg/L	Zn: 75 mg/L
--------------	--------------	-------------

CH,: 13 vol 56 He: 1 vol 56

Reserach Questions

- 1. Which valuble elements in which concentrations occur in different types of geothermal settings (brine, gas, scale)?
- → overview and economic evaluation
- 2. What are the geological and geochemical processes & parameters responsible for an enrichment of these elements in the brine?
- → relevant for understanding / important for predicting)
- 3. How can the elements be extracted from brine, gas and scale during geothermal plant operation?
- → technology development and economic evaluation)

Project numbers

- 4 year project duration (start May 2022)
- 20 partners

Participant No. *	Participant organisation name	Country
(Coordinator)	German meanth centra for Germinners (GFZ)	Comsaty
2	University of Miskele (UNIM)	Hangary
37	International Rese Materials Observatory (INTRAW)	Belgium
1	Lu Patria Remarch Centre S.L. (LPBC)	Spain.
5	Jacobs University Bremen (JUH)	Generaty
6	United Kingdom Research and Inservation (UKRI)	UK
,	University of Neschatel (UNINE)	Swoonland
6	University of Pades (UNSPD)	italy
	Dr. Brill Sestitute (BE)	Ommeny
10	University of Instant (Uel)	hickent
11	Cornell Lithure (CL)	UK
12:	Gerthermal Engineering Ltd (GEL)	1.00
13	Izaur Institute of Technology (IZTECH)	Dortor
14	European Substition of geologists (EFG)	Betginin
15	Flore(d) Institute for Technological research (VITO)	Dicigitate
16	Lieuvensity of Namiki (LieN)	Kenye
17	DILECOM innovation Artiki Mi Kondoskopiki Flatmia	Greece
18	Hydronotop Gmild (HII)	Germany
19	Larent Sources (LS)	UK
20	Natürlich Insheim (NI)	Octobery :

Project Structure

WP1 – Screening and mapping of CRM-content in geothermal settings

- Data collection and database creation
- Sampling and analysis of liquid, gas, and solids
- · Data compilation
- Establishing CRM-geothermal Fluid Atlas for Europe and East Africa
- Al-based Simulation Tool (predictive and prescriptive analysis of the data using artificial intelligence/machinge learning tools)

Current stauts of the REFLECT fluid atlas. Location of the 2400 wells where formerly existing well, fluid, rock and reservoir data have been collected. (Source: Karoly Kovacs, UNIM)

WP 2 Geological controls of CRM mobility, source and sustainability

- obtain better knowledge of the geological and geochemical controls of CRM enrichment in geothermal environments.
- quantify the long-term sustainability of extraction of CRM.
- obtain better knowledge of the enrichment processes of CRM in scales from high enthalpy settings (Iceland and Turkey).
- obtain better knowledge of the enrichment processes and sustainability CRM extraction from low salinity, crystalline rocks (Cornwall, German sedimentary basin).
- quantify REE + Y enrichment in alkaline geothermal areas (brine or scale) and track their source.
- demonstrate potential economic sustainability of CRM extraction at the study sites before the brines become depleted.

WP 2 Geological controls of CRM mobility, source and sustainability

- High enthalpy volcanic systems (Iceland, Turkey) → enrichment in scales
- Low salinity crystalline systems (Cornwall) → Li, Sr extrcation, leaching experiments, Miniplant
- Saline water in sedimentary basins (North German Basin and/or URG) → Li, Sr, Cu
- Alcaline systems (East African Rift) → Rare earth elements and helium in fluids, rocks and scales
- Metamorphosed flysch (Turkey) → Li, Sr...

WP3 – Development and optimisation of extraction technologies for CRM from geothermal brines

- Adsorptive extraction by ion sieves (GFZ, IZTECH)
- Selective Ion exchange membranes (Uni Padua)
- Adsorption by means of modified (bio-) polymers with crown ethers (GFZ)
- Bioextraction and bioaccumulation (Uni Neuchatel)
- He-extraction by membrane technology (GFZ)
- Gas diffusion electro-crystallisation (VITO)

Mini-pilot system at Tuzla site: Adsorption test for Li using Polyester fibers on which adhesive epoxy resin with the adsorbent is applied. (Source: Mustafa M. Demir, IZTECH)

