Professional Development Workshop on

Critical Raw Materials Content in Thermal Waters: Analysis and Assessment

30th March 2023 University of Miskolc, Hungary

Geological risk assessment in geothermal developments: how and why?

Thought Experiment

Imre Szilágyi

Geologist and Economist Consultant, O&G, Geothermal Guest Lecturer, Eötvös Loránd University Honorary Assistant Professor, Miskolc University

GEOLOGICAL RISK – GEOLOGICAL PROBABILITY

What is Geological Risk?

- Project fails due to unfavorable geological (non-technical) conditions
- Probability of the adverse outcome of stochastic geological events

Geological Probability – Probability of Success (POS) – Oil & gas exploration

- Geological chance for Project success Discovery of recoverable hydrocarbons
- > 1-POS (Geological Risk): Chance for a dry well Expenditures lost (Dry Hole Cost)

GEOLOGICAL RISK – GEOLOGICAL PROBABILITY

What is Geological Risk?

- Project fails due to unfavorable geological (non-technical) conditions
- Probability of the adverse outcome of a stochastic event

Geological Probability – Probability of Success (POS) – Oil & gas exploration

- Geological chance for Project success Discovery of recoverable hydrocarbons
- > 1-POS (Geological Risk): Chance for a dry well Expenditures lost (Dry Hole Cost)

If ENPV < 0; Well is not drilled</p>

POS QUANTIFICATION IN HYDROCARBON EXPLORATION

- Source Rock, Migration, Reservoir, Seal & Trap Developments are POS Components
- POS for each Component is quantified by data and interpretations as evidences
- Supportiveness & Exploration Maturity

GEOLOGICAL RISK/PROBABILITY IN GEOTHERMAL

Why can geothermal developments fail?

- Technical failures Drilling problems
- Project management failures Poor planning and control

Geological failures – Undervaluation of geological risk factors

Geothermal Probability of Success (POS)

- > (Geological) chance for a successful geothermal development
- Probability of sufficient initial geothermal capacity

POS ASSESSMENT IN GEOTHERMAL – EXISTING PRACTICE*

*The Netherlands Organization for Applied Scientific Research (TNO)

** Insured against geological failure

POS ASSESSMENT IN GEOTHERMAL – EXISTING PRACTICE*

Concerns:

- What if aquifer is not present? Even if geological interpretation suggest...?
- What if the aquifer will produce dry welltest? Even if most (but not all) of the wells drilled to the same aquifer produced water...?
- What if the geochemistry of the water will be as unfavorable as it hinders fluid production?
- What if temperature will be as low as it makes energy production uneconomic? Even if flow rate is favorable...?

POS ASSESSMENT IN GEOTHERMAL – INTRODUCING the PRACTICE of O&G

- Combined convection/conduction play; Well-multiplets; District heating Ingredients : **POS Components**
- Development of aquifer formation
- Sufficient initial flow-rate
- Favorable water geochemistry
- Sufficient aquifer temperature

- Aquifer Presence
- Aquifer Quality
- Fluid Quality
- > Temperature

Risking (Risk = 1 – Probability):

- 1. How much chance (POS) do we have for the Aquifer?
- 2. If Aquifer is present, how much chance (POS) do we have for sufficient initial flow rates?
- 3. If Aquifer quality is provided, how much chance (POS) do we have for favorable geochemistry of water which will not hinder initial energy production?
- How much chance (POS) do we have for aquifer temperature sufficient for district 4. heating?

ENERGY NEED

Planned facility

+

Operating doublet (O)

- Re-purposed unsuccessful hydrocarbon exploration well tested water
- ➤ Capacity: 2.5 MW_{th}

Geothermal energy need:

Site	Capacity (MW _{th})		
A	2.1		
В	2.5		
C	4.8		
D	6.2		
E	8.5		
F	10.7		
G	6.0		

GEOTHERMAL POTENTIAL: AQUIFER

Aquifer: Marine Sandstone

- Mapped by well-tied seismic
- ➢ Well-logs, cores available
- Depth: 1,200 3,000 m
- Thickness: 0 1,000 m
- Porosity: 12-18%
- Permeability: 3-12 mD

Wells:

Aquifer Sandstone

Shale – HC Source

Nr	Depth (m)	Thickness (m)	Test
1	1,475	185	Water: 18.3 l/s
2	2,030	950	Water: 22.5 l/s
3	2,050	870	Oily water: 25.4 l/s
4	1,205	476	Dry (no inflow)
5	1,210	320	Water: 12.8 l/s
6	1,810	510	Water: 17.3 l/s

Aquitard Claystone

Basement

GEOTHERMAL POTENTIAL: TEMPERATURE

Aquifer temperature

- Defined by heat flow densities & depth
- Modified by regional waterflow
- Ranges between 40 and 90 C
- ➢ Geothermal gradient: 30-42 C/km

Nr	ВН Т (С)	Gradient (C/km)
1	44.3	30.0
2	62.0	30.5
3	64.2	31.3
4	49.7	41.2
5	47.3	39.1
6	56.4	31.2

Aquitard Claystone

Basement

Wells:

Aquifer Sandstone

Shale – HC Source

UNRISKED GEOTHERMAL CAPACITY ESTIMATION @ DEVELOPMENT SITES*

25.6

18.5

UNRISKED GEOTHERMAL CAPACITY ESTIMATION @ DEVELOPMENT SITES*

UNRISKED GEOTHERMAL CAPACITIES vs ENERGY NEEDS

		Site	Mean Capacity / Prod. Well (MW _{th})	Required Capacity (MW _{th})	Nr. Required Wells
		Α	1.11	2.1	2
		В	2.74	2.5	1
		С	2.47	4.8	2
		D	3.02	6.2	2
		E	2.88	8.5	3
		F	3.52	10.7	3
E	F	G	3.10	6.0	2
			· · · · · · · · · · · · · · · · · · ·		
		Ho [.] hav	w much (geolog e to meet the re	ical) chanc equired ca	e do we pacities?

Not to scale

Probability of Success (POS)?

RISK ASSESSMENT: AQUIFER PRESENCE

RISK ASSESSMENT: AQUIFER PRESENCE

RISK ASSESSMENT: AQUIFER QUALITY

Aquifer Quality

Risk: Even if aquifer present, the well is dry (no fluid inflow) – W4 Risk factor: Tight sandstone

How much POS do we have for deliverability (sufficient water inflow) at development sites?

RISK ASSESSMENT: AQUIFER QUALITY

RISK ASSESSMENT: AQUIFER QUALITY

RISK ASSESSMENT: FLUID'S QUALITY

Fluid Quality

Risk: Geochemistry of the water is so adverse that it hinders production Risk factor: Oil content – as in W3 Source rock & migration pathways confirmed by seismic interpretation

How much POS do we have for oil-free thermal water at development sites?

How much risk (1-POS) do we have to find a "hidden" HCaccumulation on the migration pathway?

RISK ASSESSMENT: FLUID'S QUALITY

Temperature ranges at development sites:

Site	MIN (P99)	MAX (P01)	Mean
А	46.4	51.7	48.9
В	76.0	81.6	78.7
С	75.3	81.0	78.0
D	70.5	74.4	72.3
Е	78.1	87.0	82.4
F	86.4	108.9	97.0
G	76.0	81.6	78.7

How much POS do we have for the sufficient aquifer T?

Considerations:

- > POS of T: The probability of the "threshold" temperature
- If estimated T is below the "threshold", the minimum capacity (in study case 1.5 MW_{th}) were not met Even if flow-rate (Q) is the High Estimate (P10)
- > Q estimation: Based on flow rates of neighboring wells; Uncertainty added

To have 1.5 MW_{th} capacity at 20.4 l/s flow rate **48.6 C** aquifer temperature is needed

1-P of T (C), Site A

Temperature POS @ Development Sites

Site	MIN T	Threshold T	POS(T)
Α	46.4	48.6	0.60
В	76.0	48.5	0.99
С	75.3	50.1	0.99
D	70.5	46.3	0.99
E	78.1	48.7	0.99
F	86.4	48.1	0.99
G	76.0	47.0	0.99

Sites B, C, D, E, F, G: MIN T > Threshold T POS(T) = 1

GEOTHERMAL POS QUANTIFICATION

GEOTHERMAL POS IN FUND MANAGEMENT

GEOTHERMAL POS & PROJECT ECONOMICS

Fund Management's perspective:

- Use of geothermal energy instead of gas decreases CO2 emission
- CO2 is traded Monetary value NPV
- Investment is the grant contribution \succ

Developer's perspective:

- Energy production delivers NPV
- Investment is the self contribution

 $ENPV = POS \times NPV - (1 - POS) \times GC$

BONUS: POS OF LITHIUM PRODUCTION

GEOTHERMAL POS & PROJECT ECONOMICS – LITHIUM PRODUCTION ADDED

Economics is viewed from the Developer's perspective:

- Sufficient Li-concentration is characterized by POS(LI)
- Li-extraction requires additional investments added to the energy project's self contribution
- Investment decision is made after the completion of the multiplets
- Li-extraction may bring additional NPV If Present Value > Discounted Investment (Li)

GEOLOGICAL RISK ASSESSMENT IN GEOTHERMAL – SUMMARY

Geothermal POS is the probability of sufficient initial capacity

POS quantification methodology (Similar to hydrocarbon exploration):

- Identification of independent or conditional probability components, e.g.:
 - > Aquifer Presence
 - Aquifer Quality
 - Fluid Quality
 - > Temperature

Consideration of data supportiveness and the exploration maturity

Relevance of risk (1 – POS) quantification:

- Ranking of development opportunities Grant distribution
- Project economics Fund management's perspective
 - Developer's perspective

Professional Development Workshop on Critical Raw Materials Content in Thermal Waters: Analysis and Assessment

Geological risk assessment in geothermal developments: how and why?

Thank you for your attention!

Imre Szilágyi

Geologist & Economist Guest Lecturer, Eötvös Loránd University Consultant, O&G, Geothermal

CA questions:

