#### **Professional Development Workshop on**

#### **Critical Raw Materials Content in Thermal Waters: Analysis and Assessment**

30th March 2023 University of Miskolc, Hungary

#### Remote, standoff and laboratory-based applications of laser induced breakdown spectroscopy

#### Prof. Dr. Gábor Galbács

Department of Inorganic, Organic and Analytical Chemistry, University of Szeged







Co-funded by the European Union



# LIBS: Principle of operation

Laser induced breakdown spectroscopy (LIBS) is based on the observation of the light emission from a microplasma generated on the sample surface (or inside it) by a high intensity (GW-TW/cm<sup>2</sup>) pulsed laser beam.

The sample material absorbs laser light and hence becomes evaporated/ablated in the focal spot. The temperature of the microplasma can be as high as 10-20 000 K, thus sample material gets atomized and ionized and thermally excited.

The spectrometer that detects the plasma emission is tightly synchronized with the laser (gate delay: 1-3  $\mu$ s, gate width: 1  $\mu$ s to 1 ms).



# LIBS: Principle of operation

The dynamic LIBS spectrum contains many (10s of thousands) spectral lines, therefore are highly characteristic of the sample's qualitative and quantitative composition ("fingerprints").

The spectra contain atomic and molecular spectral features, but only provide information about the elemental composition.





**European Union** 







### Comparison of analytical performance: LIBS, XRF, LA-ICP-MS

|                          | LIBS                | XRF                     | LA-ICP-MS               |  |  |  |
|--------------------------|---------------------|-------------------------|-------------------------|--|--|--|
| sample phases            | solid, liquid, gas  | solid                   | solid, liquid           |  |  |  |
| sample size/shape        | unlimited           | some limitation         | strong limitation       |  |  |  |
| measureable elements     | all                 | most, except light ones | most, except light ones |  |  |  |
| limit of detection       | trace (ppm)         | trace (ppm)             | trace (sub-ppm)         |  |  |  |
| isotope information      | some                | none                    | yes                     |  |  |  |
| info content of specta   | very high           | high                    | medium                  |  |  |  |
| destructiveness          | micro               | none                    | micro                   |  |  |  |
| speed of analysis        | very fast (seconds) | fast (< minutes)        | fast (< minutes)        |  |  |  |
| remote/standoff analysis | yes                 | no                      | no                      |  |  |  |
| robust                   | yes                 | yes                     | no                      |  |  |  |
| field-portable           | yes (even handheld) | yes (even handheld)     | no (lab-based)          |  |  |  |
| spatial resolution       | yes (microns)       | yes (microns)           | yes (microns)           |  |  |  |
| depth-resolved analysis  | yes                 | no                      | yes                     |  |  |  |
| easy-to-use              | yes                 | yes                     | no                      |  |  |  |
| cost of instrumentation  | low to medium       | low to medium           | high                    |  |  |  |









## What can LIBS offer for geology?

- spatially and depth-resolved measurements (e.g. zoning, inclusions)
- quantitative measurements for all elements (e.g. prospection)
- sample recognition (qualitative discrimination)
- ultra portable instrumentation (e.g. UAV, rover, handheld, backpack)
- remote measurement capabilities (e.g. via fiber optics)



**Applied Photonics** 

#### Selected applications of LIBS to geological samples











## Lab-based: Mineral grain identification and prospection

- chemometric evaluation of the LIBS hyperspectral data set obtained from rock mapping can be used to
  - automatically identify and localize the occurring mineral grains
  - assess the elemental content of the rock





P. Janovszky, K. Jancsek, DJ. Palásti, J. Kopniczky, B. Hopp, T. M. Tóth, G. Galbács, *J. Anal. At. Spectrom*. 36 (2021) 813. S. Moncayo, L. Duponchel, N. Mousavipak, G. Panczer, F. Trichard, et al., *J. Anal. At. Spectrom*. 33 (2018) 210–220.









## **Standoff: Space explorations**

- multiple Mars rovers are/have been equipped with LIBS instruments
  - NASA Curiosity, 2012
  - NASA Perseverance, 2020
  - Zhurong, 2021
  - ESA Exomars/Rosalind Franklin, 2028?

















## Standoff/remote: Hydrothermal vents/deep sea deposits

- deep sea deployable (> 3000 m) LIBS instruments were constructed for the analysis of
  - sea water
  - sediments and rocks at the sea floor
  - polymetallic nodules at the sea floor



| Sample          | Depth m | Zn %wt | Cu % | Pb %   | Fe %  | Mn %   | <b>Co</b> % | Ni %     | Mg %   | Al % | Ca %  | Ti %   | Ag ppm | Sb ppm | (i)     |     | ſn    |         | Mn |
|-----------------|---------|--------|------|--------|-------|--------|-------------|----------|--------|------|-------|--------|--------|--------|---------|-----|-------|---------|----|
| lade chimney    | 1340    | 19.80  | 4.39 | 12.20  | 10.20 | 0.08   | < 0.01      | <u>.</u> | 0.02   | 0.01 | 0.02  | < 0.01 | 182    | 215    | y(a.1   |     | Ca    |         |    |
| Hatoma chimney  | 1485    | 12.00  | 5.25 | 10.30  | 3.50  | 0.46   | < 0.01      | -        | 0.05   | 0.51 | 0.06  | -      | 486    | 5940   | Isit    |     |       | Fe      |    |
| Yoron chimney   | 569     | 0.64   | 0.10 | 0.76   | 2.52  | < 0.01 | < 0.01      | -        | < 0.01 | 0.04 | 0.11  | -      | 532    | 3330   | Inter 4 |     | Fe    | ٨       |    |
| Manganese crust | 1390    | 0.10   | 0.06 | 0.21   | 9.50  | 16.20  | 0.57        | 0.46     | 1.03   | 0.98 | 6.32  | 0.34   | < 100  | < 100  | E       |     |       | Λ       |    |
| Basalt          | 1418    | 0.02   | 0.02 | 0.02   | 8.66  | 0.20   | < 0.01      | 0.02     | 4.99   | 6.79 | 9.96  | 1.45   | -      | -      | 1       | (V) | 1 1   |         | Mn |
| Limestone       | 1147    | < 0.01 | 0.01 | < 0.01 | 0.38  | 0.47   | < 0.01      | 0.03     | 0.09   | 0.25 | 25.20 | 0.04   | -      | _      | 2 -     |     | VI II | Fe Fe M |    |

B. Thornton, T. Takahashi, T. Sato, T. Sakka, A. Tamura, A. Matsumoto, et al., *Deep Sea Research*, 95 (2015) 20-36. C. Liu, J. Guo, Y. Tian, C. Zhang, K. Cheng, W. Ye, R. Zheng, *Sensors* 20 (2020) 7341.









420

Wavelength(nm)



450

## **Standoff: Airborne LIBS**

- ultra compact standoff LIBS instruments were designed for UAV deployment.
  Some of the challenges and their handling:
  - sensitivity boost with innovative spectrometer designs (e.g. spatially heterodyne spectrometer)
  - signal scatter (caused by vibrations and motion) reduction using a camera
  - safety issues







S. Palanco, S. Aranda, F. Mancebo, M.C. López-Escalante, et al., *Spectrochimica Acta Part B* 187 (2022) 106342. P.D. Barnett, N. Lamsal, S.M. Angel, *Applied Spectroscopy* 71 (2017) 583-590. D.J. Palásti, M. Füle, M. Veres, G. Galbács, *Spectrochimica Acta Part B*, 183 (2021) 106236.







Co-funded by the European Union

# Lab/field-based: Speleothem (stalagmite/stalactite) analysis



G. Galbács, I. Kevei-Bárány, E. Szőke, N. Jedlinszki, I.B. Gornushkin, M.Z. Galbács, *Microchemical Journal* 99 (2011) 406–414. J. Cunat, S. Palanco, F. Carrasco, M.D. Simón, J. J. Laserna, *J. Anal. At. Spectrom.*, 20 (2005) 295-300.









#### Field-based soil analysis

- soil texture (relative proportion of sand, silt and clay in soil) directly affects critical properties, such as susceptibility to erosion, water holding capacity, organic matter content, etc. → PLSR LIBS model based on 51 spectral lines of 12 elements
- soil pH → PLSR LIBS model based on Ca, Al, O, H spectral lines (associated with alkalinity)

Table 1



Reference and predicted pH values, and absolute errors of prediction, for ten samples of the validation set.

| pH reference value | pH predicted value | Absolute error |  |  |  |
|--------------------|--------------------|----------------|--|--|--|
| 6.2                | 4.9                | 1.3            |  |  |  |
| 5.4                | 5.0                | 0.6            |  |  |  |
| 4.5                | 4.4                | 0.1            |  |  |  |
| 5.4                | 5.3                | 0.1            |  |  |  |
| 5.0                | 5.1                | 0.1            |  |  |  |
| 4.5                | 4.5                | 0.0            |  |  |  |
| 5.6                | 5.6                | 0.0            |  |  |  |
| 4.1                | 4.4                | 0.3            |  |  |  |
| 4.8                | 4.7                | 0.1            |  |  |  |
| 5.9                | 5.7                | 0.2            |  |  |  |

\* Mean absolute error (MAE) = 0.3

P.R. Villas-Boas, R.A. Romano, M.A. de Menezes Franco, et al., Geoderma 263 (2016) 195-202.

E.C. Ferreira, J.A. Gomes Neto, D.M.B.P. Milori, E.J. Ferreira, J.M. Anzano, Spectrochimica Acta B 110 (2015) 96-99.













# Field-based prospection

 newer portable LIBS instruments are capable of small rastering, thereby allowing for quick and more reliable assessment of rock composition







B. Connors, A. Somers, D. Day, Applied Spectroscopy 70 (2016) 810-815.











## **Field-based geochemical fingerprinting**

 differentiation of minerals from different locations is possible in the field





Figure 6: Principal Component Analysis result for 7,560 LIBS spectra of 24 columbite-tantalite samples from 17 locations.

R.S. Harmon, C.J.M. Lawley, J. Watts et al. *Minerals*. 9 (2019) 718. R.S. Harmon,K.M. Shughrue, J.J. Remus, et al., Anal. Bioanal. Chem. 400 (2011) 3377.







Co-funded by the European Union

