



#### Professional Development Workshop on

**Critical Raw Materials Content in Thermal Waters: Analysis and Assessment** 

30th March 2023 University of Miskolc, Hungary

#### Co-production of clean energy and metals from a single interlinked process - the CHPM concept

Éva Hartai

University of Miskolc









#### Content

CHPM2030 - Combined heat, power and metal extraction from ultra deep ore bodies 1. CHPM2030 project facts

- 2. Research concept
- 3. Main research results





## Project facts

- Call: H2020-LCE-2014-2015 two-stage, Research and Innovation action
- Topic: Developing the next generation technologies of renewable electricity and heating/cooling
- Project ID: 654100
- Implementation: 01.01.2016-30.06.2019
- Budget: 4.2 million EUR
- TRL: 4-5



# Members of the consortium



CHPM2030 @ 10

| Partner organisation                                   | Country  |
|--------------------------------------------------------|----------|
| University of Miskolc (UNIM), coordinator              | Hungary  |
| University of Szeged (USZ)                             | Hungary  |
| European Federation of Geologists (EFG)                | France   |
| Iceland Geosurvey (ISOR)                               | Iceland  |
| British Geological Survey (BGS)                        | UK       |
| Laboratório Nacional de Energia e Geologia (LNEG)      | Portugal |
| Vlaamse Instelling voor Technologisch Onderzoek (VITO) | Belgium  |
| La Palma Research S.L. (LPRC)                          | Spain    |
| Agency for International Minerals Policy (MinPol)      | Austria  |
| Geological Survey of Romania (IGR)                     | Romania  |
| Katholieke Universiteit Leuven (KLeuv)                 | Belgium  |
| Geological Survey of Sweden (SGU)                      | Sweden   |

#### Challenge and rationale

1) Increasing demand for green energy in the EU and worldwide – EGS is expensive

Developing a new technology for combining geothermal energy production and metal mining

2) EU needs critical raw materials – limited mining Create a proof of concept of the technical and economic feasibility at laboratory scale

CHPM2030 @ 10



material contained in the geothermal fluids in addition to thermal and electrical energy. (Strategic Research and Innovation Agenda, ETIP Geothermal - 2019)



#### The research concept

- Identifying ultra deep metalliferous formations
- Establishment of EGS
- Enhancing the interconnected fracture systems within the orebody
- Leaching metals from the orebody
- Extracting metal from the geothermal brine
- Production of heat and electricity
- Financially more feasible operation/earlier return of investment



The CHPM research concept





#### Conceptualisation





# Main research results

- EGS relevant review of ore mineralisations
- Identification of potential test sites
- Laboratory tests on metal leaching
- Metal recovery in two steps
- Additional power generation by SGP
- System integration
- Complex assessment
- Research Roadmap



#### Schematic overview of the envisioned CHPM Installation



#### EGS relevant review of ore mineralisations





# Most appropriate geological settings

1) Magmatic-hydrothermal mineralisations associated with intrusive bodies (appropriate mechanical properties of host rocks)

- 2) Basins in rift or subduction zones (relatively thin mineralised horizons, but with large lateral extension)
- Deep-rooted fault zones, with larger extension and elevated heat flow (deep-seated fertile rock body, which can have a potential for further leaching)



#### Cornwall, SW England, BGS

Paul A. J. Lusty, plusty@bgs.ac.uk,

- SW England, Cornwall, major magmatic province, high heat production, extensive polymetallic mineralisation (Cornubian Orefield), UK HDR project, United Downs Deep Geothermal Power project, 5 km 200 Celsius.
- Geological environment, geothermal characteristics, potential for deep metal enrichment, technical, environmental, social and regulatory factors.
- 3 models: Cornubian Batholith (geothermal energy development, fracture mapping), site scale 1: HDR project site, fracture data, hydrogeological properties, district fracture network models, potential flow paths; site scale 2: NW Carnmenellis granite, UDDGP site,



Sinclair (1995)

CHPM2030

#### Portuguese Iberian Pyrite Belt, LNEG

Elsa Cristina Ramalho, elsa.ramalho@lneg.pt

- SW IPB, Variscan metallogenic province, massive sulphides deposits, active mining region, prospect for deep mineralization, energy transition in PT, Neves-Corvo Mine (extend lifetime with CHPM?)
- Update on geoscientific data and information on SW IPB, 3D modeling, geophysical data
- Ivestigate the deeper ore deposits, 3D modeling, new upcoming deep seismics, 3D electromagnetic forward modeling, 3D inversion, → mineralization at depth. Lombador orebody at 2-3 km: extend lifetime with CHPM? cooperation with the mining company and government.









#### Beius Basin-Bihor Mountains, Romania, IGR

Diana Persa, persa.diana@yahoo.ro

- Beius basin and Bihor Mountains, favourable geothermal (~Pannonian basin, thin crust, high heat flow/gradient) and mineral (intrusive magmatic bodies, Banatitic Magmatic and Metallogenic Belt) potential.
- Beius Basin geothermal potential (DHS up and running Mg, geothermal potential), Bihor Mountains (granodioritegranite plutonic body related, skarn (Fe, Boron, Bismuth, Moly), vein (Cu, Zn, led-Pb, sulphides), brucite deposit, borate deposit, metal skarn (W).
- 1) Geothermal models (150 Celsius), 2) refraction seismic for the plutonic body and mineral indications, 3) fracture network modeling for understanding reservoir characteristics.



Beius-Bihor report



#### Kristineberg, Nautanen areas, Sweden, SGU

Gerhard Schwarz, Gerhard.Schwarz@sgu.se

- 2 ore provinces: Kristineberg area (Skellefte district, volcanogenic massive sulphide deposits, Zn, Cu, Au), Nautanen area (Northern Norrbotten district, IOCG, Cu, Fe, Au).
- low geothermal gradient, limited info 5-7 km, permeability, deep-seated fluids in the crystalline bedrock is rudimentary, hydraulic conductivity,



• Geophysical studies, deep seismic, magnetotelluric measurements, cooperation with the mining industry?

CHPM



Sweden report

# Potential sites (European overview)

#### European Outlook, EFG

Domenico Marchese, projects@eurogeologists.eu Anita Demény

1. Area selection

CHP

- 2. Basic area evaluation
- 3. CHPM characteristics

EFG's National Geological Associations CHPM information platform on prospective locations: http://bit.ly/CHPMinfoplatform

| EFG LTPs involved in                                                                                                           | Data collected by RBINS (7)                                                                                            |                                                                                                   |                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Belgium</li> <li>Czech Republic</li> <li>Finland</li> <li>France (by EFG)</li> <li>Germany</li> <li>Greece</li> </ul> | <ul> <li>Hungary</li> <li>Ireland</li> <li>Italy</li> <li>The Netherlands</li> <li>Poland</li> <li>Portugal</li> </ul> | <ul> <li>Serbia</li> <li>Slovenia</li> <li>Spain</li> <li>Switzerland</li> <li>Ukraine</li> </ul> | <ul> <li>Austria</li> <li>Croatia</li> <li>Cyprus</li> <li>Luxembourg</li> <li>Slovakia</li> <li>Sweden</li> <li>United Kingdom</li> </ul> |



EU outlook report



# Lab experiments on metal leaching



The concept of enhanced metal leaching in geothermal systems



#### Selected samples

|            | Sample ID | Sample<br>locality               | Geological setting                                          | Summary of bulk mineralogy as determined via X-ray diffraction                                                                        |  |  |
|------------|-----------|----------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | HTLMix    | Herodsfoot,<br>SW England        | Baked sediments with partial quartz vein                    | 87% quartz, 5% muscovite, 2% dolomite,<br>5% galena, minor albite, chlorite, pyrite and<br>sphalerite                                 |  |  |
|            | HTL315    | South<br>Caradon,<br>SW England  | Mainstage mineralisation, associated with granite bodies    | 70% quartz, 7% schorl, 5% chlorite, 2% calcite, 10% pyrite, 5 % arseonpyrite, minor greigite and biotite                              |  |  |
|            | HTL319    | Cligga Head,<br>SW England       | Tin-tungsten mineralisation, associated with granite bodies | 88% quartz, 2% muscovite, 3% cassiterite, 3% columbite and 4% ferberite                                                               |  |  |
|            | HTL321    | Masca-<br>Cocovaleni,<br>Romania | Mineralised skarn country rock                              | 22% dolomite, 49% pyrite, 27% magnetite, minor quartz, calcite and barite                                                             |  |  |
|            | HTL322    | Rudabánya,<br>NE Hungary         | Carbonate hosted lead-zinc mineralisation                   | 8% quartz, 2% calcite, 68% magnesite, 6%<br>cerrusite, 1% sphalerite, 1% columbite,<br>11% barite, 2% magnetite and minor<br>dolomite |  |  |
| СНРМ2030 🕐 | HTL324    | Recsk,<br>NE Hungary             | Porphyry sulphide polymetallic<br>ore                       | 74% quartz, 5% calcite, 9% pyrite, 11%<br>magnetite, minor albite, dolomite and<br>sphalerite                                         |  |  |
|            |           |                                  |                                                             |                                                                                                                                       |  |  |

# HPHT batch and flow through experiments

#### BGS

- 5 g solid sample
- 40:1 fluid:rock ratio
- 70°C, 100°C, 150°C, 200°C
- 1 bar, 200 bar
- 600-1000 hours
- Leaching agents: deionized water, 0.1 M acetic acid, 0.013 M "aqua regia"

#### University of Szeged

-HTHP (40 MPa) system: HPLC pump, external heating and insulation;

–Flow through tests on grinded rock (250  $\mu$ m) under 300 bar pressure at 300°C temperature

-Pressure, temperature and flow rate can be controlled any time during experiments

-Output analysis: XRF, ICP-MS







## Leachate performance at HTHP batch experiments

- Tap-water & deionised water: poorest performing fluids (addition of CO<sub>2</sub> improved leaching, but generally restricted to base metals)
- Best performing fluids: dilute EDTA, SDS and acetic acid (organics): leached 100-1000s ppm base metals & liberate some minor or 'critical' metals
- Most fluids dissolved high loads (10s-1000s ppm) of elements derived from silicate minerals → implications for permeability of the EGS reservoir





# Report on metal leaching

- 62 pages of main report.
- Plus 305 pages of appendixes.
- Contains details of the experiments, all analytical data, plus conceptual or numerical modelling.







# HTHP metal recovery (KU Leuven)





#### Electrolitic metal recovery

- Ox/red of metal ions in solution by an electricitydriven conversion, such that they "deposit" onto an electrode: **electrodeposition**
- ↑T ↑P electrodeposition from geothermal brines (100°C, 5MPa):
- Increases kinetics and mass transport
- Avoids issues like precipitation of silica
- More energetically favorable vs. ambient conditions
- Completely unexplored (no thermodynamic data)
- It only works for a limited number of metals (Cu, Ag, Ni, Pb, Sn, Fe, PGM)



# Metal recovery with GDEx (LTLP)





•250 ml batch vessels •10 cm<sup>2</sup> GDE anode





# Metal recovery with GDEx (LTLP)

Geothermal brines from Romania





Additional electricity production by salinity gradient power generation



- Reverse electrodialysis
- Effect of T on power generation in the stack: higher T increases power generation





Report on performance, energy balances and design criteria for salt gradient power reverse electrodialysis CHPM2030 Deliverable D3-3 And the Party of t CHPM2030



# System integration: technological components – design parameters

Main technological components

#### Design parameters:

- Temperature
- Pressure
- Acidity/basidity
- Redox condition
- Oxygen fugacity
- Carbon dioxide
- Conductivity
- Flow rate
- Salinity
- Oxidizing compounds
- Concentrated suspended solids





#### Model framework based on component level models

The different system components were integrated into a single system by a mathematical model. This model is used to develop optimisation strategies for heat, energy and metal production.





#### From component model to systems dynamic



Technology harmonisation issues within the CHPM loop:

- Technology components are at different TRL
- Component models represent different levels of complexity
- The system dynamics model must handle various levels of data reliability
- Agreement on the minimum dataset of design parameters
- Move from very simple to complex
- Move from site specific scenarios toward a general CHPM plant







#### Integrated sustainibility assessment









#### Research roadmap





#### Research roadmap - timeline









#### Conclusions

- CHPM2030 was a low TRL project, promising a proof of concept on lab scale.
- Some technology components were developed on lab scale, while other elements are readily available full scale.
- Parallel activities of technology development and a whole system dynamic modelling are special features of the project.
- Full loop concept was not achieved during the project implementation phase (was not even the purpose).



# Thank you for your attention!

www.chpm2030.eu







